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Problems of penetration of a solid body into the ground (or about under- 

ground explosions) are solved when certain assumptions as to the pro- 

perties of the investigated medium are made. In this work, such a sche- 

matic medium is an ideal (non viscous) and barotropic gas. The body in 

motion here is a circular cone with a constant velocity of penetration 

(with the angle of attack = 0). 

1. Statement of problem. Uniform gas fills an infinite plane at rest 

at initial time t = 0; then it is separated by a cylinder whose radius 

increases proportionally with time. Let the velocity of the cylinder (i.e. 

the velocity of its radial increase) be equal to II. Let t = time and r = 

distance from a point to the axis of the cone (Euler’s coordinate); 

PCr, r1. PC’, t1. u(r, t) are respectively the pressure, the density and 

the velocity of the gas. We will designate the initial values of these 

quantities by an index 0. 

Because of cylindrical symmetry, the equation of motion and continuity 

can be written as [ 1 1 

(1.1) 

The third equation (barotropy) which in our case takes the place of 
the energy equation, will have the form: 

p - P,, 7 di” (p” p,)“) (1.2) 

where n is a dimensionless constant which we will consider to be different 

from zero and unity. 

The first of the equations (1.1) can now be written as: 
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(1.3) 

The determining dimensional parameters are r, t, Cl, po, po, k. Because 

between these parameters we have the dimensional relation 

[+I= [p,] [p,-ll, [k’l= [p,] [po-“l, 

this motion is selfsimilar. Let us put a = pi-” ll’, p = II, determining 

parameters with independent dimensions. In the case considered, the only 

non-dimensional variable combination will be 

)i = Utr-l (1.4) 

and for density, velocity and the dimensional constant in (1.3) we have 

1 2 2 --- 
~ _ ($ - nr 1 -n&=i 

?I* u = rt-‘z, nzk2 = aa2 (1.5) 

where x and y are dimensionless quantities and are therefore functions of 

only one variable: (I is a dimensionless constant. Substituting (1.5) into 

(1.3) and into the second equation of (l.l), we have 

r 

h L 
dx (= dy _ 1) dh + ,zyn-2 -&- 

I 

2a2 
= 29 ~~ x + __ 

n-l y 
n-1 

1 
2 ?& zy-- 

n--l y (1.6) 

Dividing the first equation by the second we have 

dz ; z+(n+l)x(1-x)~2a2----(l-z)/~2 

dx - x z--(1 -x)2, ZaY 

where we have substituted z = y n-1. From (1.6) we find 

(1.7) 

dh h z- (1 --x)*/S 
- =- - 
dx 2x 2 - (1 - 2)” / 2a* (f.f9 

If we succeed in integrating (1.7). then x(x) and z(x) are in quadrat- 

ure. But before starting any further investigation of (1.71, we have to 

determine the initial and the boundary conditions with respect to the new 

variables. For the condition of rest (U = 0). variables x and z correspond 

to a straight line x = 0, or the z-axis. For the portions adjoining the 

piston we have r = Ut, u = U, it follows that z = 1. Hence 0 < z < 1. 

Now we have to consider the relationships for a strong (and a weak) 

discontinuity, considering that the waves are propagating into a gas that 

is in a state of rest. Designating the quantities beyond the jump by the 

index 1 we can write 
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considering that in front of the shock wave, (1.2) is valid where c is 

the velocity of the shock (or the sound) wave. 

In selfsimilar motion c = r/t = const. Substituting c = r/t and the 

relations (1.5) into (1.9), and remembering that uO = 0 we will find 

II .“, ( I Xl) 
-1 -8 ------ 

“-1 (I L,)” 

for x1 = 0 we have tl= a -*. As can be seen, this point corresponds to a 

weak shock. In this fashion strong and weak shocks in the variables x and 

t are described by a single curve 

( 1. IO) 

which is analogous to a shock adiabatic curve. When a particle crosses 
the shock wave, then the corresponding point in the plane xz jumps from 

a straight 1 ine z = 0 onto curve (1.10) (see [ 1 1 ). 

Referring to (1.8) we shall establish that curves z2 = (1 - x)*/a*, 

z3 = (1 - x)*/2a2 are boundaries which divide regions of increasing (de- 
creasing) parameter with respect to the increases in Z. Above Z*(X) and 

below Z?(X) quantities x and x increase simultaneously; in the region 

between them, x decreases whilex increases. It is easy to establish that 
curves Z,(X) and t2 (x) have only two common points (at x = 0 and x = l), 

with the exception of n = - 1 when the two curves coincide. Here z 1 is 

above z2 for n > - 1 and z1 is below z2 for n < - 1. 

We will now study the behavior of the integral curves of equation 

(1.7) in the plane (x, Z) for 0 ,( x 6 1 and L > 0 (for z < 0 the problem 

has no meaning). At the points of intersection of the straight line I = 0 

and parabola E,, = (n + 1) X(Z - 1)/2a* + (1 - =)/a*, the integral curves 
have tangent lines parallel to the x-axis. At the points of intersection 
of the line x = 0 and parabola Z?(X), these tangent lines are parallel to 

the z-axis. Points 

are singular points of the equation. At points 0, A, R we have a node and 

at C and D a saddle point. 

The integral curves are shaped as shown in Figs. 1 and 2. The arrows 

indicate the direction of increase of parameter x along the integral 
curve which corresponds to the motion towards the center of symmetry. 
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Corresponding to the state of rest are the x = 0 points of the integral 

curve. Point 0(x = 0) corresponds to an infinite point of the flow 

(r= W). For the particles adjoining the piston, we have x = 1, r = Ut, 

h = 1 according to (1.4). Hence, with motion in the physical plane from 

the piston to infinity, h decreases continuously from 1 to 0. However, 

as we can see from Fig. 1 for n > - 1, the integral curves under consider- 

ation (the ones crossing line x = 1) cross parabola Q(L) on which x 

reaches a minimum. Hence continuous transition is impossible. It follows 

that in these cases motion from line z = 1 to point 0 is possible only 

when somewhere between z = 1 and z = Z,(X) a jump takes place, as a result 

of which the describing point lands on line z = 0. On the other hand, it 

has been shown that the points on the z-axis jump on to curve (l.lO), 

which at n > - 1 is crossed by the integral curves. The following picture 

can be drawn: during the motion along the physical plane from the piston 

to infinity, the describing point moves along the integral, curve from the 

line x = 1 to its intersection with curve z,(x) at some point x = x1, 

z= t 1, after which it jumps on to line x = 0. A shock wave is created. 

Thus for n > - 1, the problem is reduced to integrating the system of 

equations (1.7) and (1.8) at boundary conditions 

(1.11) 

i. = 1. ,’ c for x=X1 

where c is the velocity of the shock wave, which can be expressed by x1. 

We have three conditions to determine two arbitrary constants from the 

integration of two equations of the first order and an unknown constant 

x1 i.e. the problem has one solution. In view of X(X,) < X(1) = 1. II < C 

i.e. the velocity of the shock wave turns out to be higher than the velo- 

city of the piston. 

Fig. 1. Fig. 2. 

Let us now consider the cases with n < - 1. Figure 2 shows that the 

integral curves crossing line x = 1 do not cross either Lo (which 
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describes the jump) or curves Z,(X), Z,,(X) on which x reaches its extreme. 

All integral curves go through point A(Oi, ae21, which, as has been shown, 

represents a shock wave in the x2-plane. And so, during the motion in a 

physical plane from the piston to infinity, the describing point moves 

along the integral curve from line x = 1 to the z-axis and further along 

the z-axis to point 0. A shock wave propagates throughout the gas. The 

problem now is to integrate the system of equations (1.7) and (1.8) with 

conditions 

A=1 for I : : 1. i. = L co for x = 0 (1.12) 

where c is the sound velocity in an undisturbed gas, a quantity which is 

fixed for all integral curves (with n fixed). 

However, there is a limitation on U because x(O) < x(l) = 1. U < co. 

This condition becomes clear when we are reminded that cases with n < - 1 

are characteristic of the following: the curve of dependence of u = - p 

on l/p (and therefore of p on deformation 6 = 1 - pu/p) has a concavity 

upward and cannot be continued into the region of large deformations, as 

this curve has to have 6 = 1 as its vertical asymptote. 

Therefore, if in the choice of n and k (i.e. in the approximation of 

a real curve) and a given velocity U, we get 0 > co (or U < co but of the 

same order) it will mean that the condensation is quite large and (1.2) 

does not hold. The general conclusion of this paragraph agrees with the 

known fact that if curve p(c ) is concave upward, then the discontinuous 

initial conditions cannot lead to a discontinuous solution. If, however, 

p” ( t 1 > 0, then the initial conditions of flow of compression create a 

shock wave. 

Let us consider the function 

I-71 -- 
11. :1 (p ; p,,) 2 rx 1. 1, 3 

considering (1.7) and (1.81 we can get 

It is now clear that for our problem Wx’ > 0 for n < 1 and I ’ < 0 

for n > 1. As x’(z) > 0, during the motion of the wave toward thee piston, 

the density continuously increases. 

Analogously we can show that ux’ > 0. Hence it follows that as time 

goes by the velocity and the density of the gas particles continuously 

increase. 

2. Let us now consider the case of n = - 1, which is of practical 
importance as a large number of real media such as clay, sand and metals 
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have this property. Here the dependence P(E ) is linear over a large set 
of values of c. For n = - 1, the family of integral curves of equation 
(1.7) which cross the line I = 1 and satisfy the condition of z > 0, is 

given by a relation 

: = (1 -a-)’ + I/ji - z)J + b”.cc” - 
‘La” (2.1) 

where b is an arbitrary constant of integration. 

For n = - 1 curve Z,(X) (the curve of jumps) has the form z1 = (1 - 

x)2/2a2 and coincides with curve z2 (x). Together they coincide with the 

integral curve (2.1) for which b = 0. And so all integral curves which 

cross line x = 1 go above Z,(X) and z~(x), which corresponds to the pro- 
pagation of a sound wave in the physical plane. The form of these integral 
curves is shown in Fig. 3. The direction of increase of A is shown by 

arrows. Qualitatively this case is identical to the case with n < - 1 of 

the preceding paragraph, and all remarks made there are also valid here. 

However, the fact that a shock wave cannot arise here is not an expected 

result, as with p” (6 ) = 0 initial di scontinuities may either lead to a 

shock or to a motion without shock. Let us in fact consider this problem 

not only in cylindrical but also in planar (stroke on a rod) and spherical 

(spherical explosion) conditions. Corresponding to system (1.7) and (1.8). 

we have system 

dz 2 z ;-~1-((2-v)l+(I-v)5~~/0~ 
Ii2 - vfl z ; - ( I -- ry / (1 + v) a’ (3.2) 

dx 5 z-(1- x)“/(l i-v)n? 

dh =T;- z-(I -.r):‘,(: - (2.3) 

where v = 0 for the planar case and v = 2 for a spherical case. For v = 0 

we get from (2.2) and (2.3) t = b2x2 and x = b,‘,i. It can be shown that 

Fig. 3. 

in this case a shock wave is created. Between the wave and the piston we 
have a region of constant flow. The problem is solved with conditions 
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(1.11). On the other hand for v = 2 a shock wave cannot be created but 

we have a sound wave, this can be shown by investigating the general 

solution of equation (2.2) at u = 2: 

The problem is solved for conditions (1.12). Let us now return to the 

problem at hand. Substituting (2.1) into (1.8) we get 

In?.- f\ 
2 Ir(I-2)~fb’z”-(1-r)?dz 

rl” (1 - ~$4 + b’z~ 

and both conditions (1.121 reduce to one (put A, = up0 /A): 

0, V( I - 2)” + b’%r? - ( 1 - x)2 
lnh, = k- \ 

zV( 1 - X)4 + b’r*- 
dz 

i 

(2.4) 

From this we find 6. 

For practical values of ll(h, << 0.5) from (2.5) we can get an approxi- 

mate formula b = 2 dr2x 02 /A,‘. He nce we can get a relation from 

(1.41, (1.5), and (2.1) 

P A VT -=- 
?e An 1/‘( 1 -- zjB + 1/( 1 - cc)‘+-bW 

It follows that for particles around the piston (x = 1. x = 1) we have 

p,/p = x00 / \rx Substituting the approximate formula for 6 here, and 

neglecting all terms above the ihird degree in the exponential expansion 

of A,. we get that near the piston c = 1 - pa/p = 0.5 A,‘. 

3. If curve p( c ) is concave downward throughout, i.e. p“ ( c) > 0, 

a shock wave is created and the following method of solution can be 
suggested. Let us assume (Fig. 4) that the dependency p(r ) is linear 

starting with some quite large values of c . A shock wave is thus created 

such that the describing point on Fig. 4 heads from zero on to the linear 
part of the diagram. Between the wave and the piston (2.1) and (2.4) will 

be valid; only the boundary conditions will be changed. Let c = t r and 

P = p1 directly behind the shock wave (Fig. 4). Also let 

PI Pu I:,z, I,. III PI -- 1’01 L,’ (p4,m’ -p;‘; 

Clearly El = k12p0. Further, for the linear portion of p(c ) let 

p-p,, /.E ; I.l)llil, p - p. -- A’(;,,m’ ?‘I) y- IYlllSl., li Y /*“:,, 

(obviously E > El). Then analogously to the derivation of curve (1.10) 
we can derive the equation of the ray OB of Fig. 4: 
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Qua litatively this case 

but here the constant kI is 

is identical with 

unknown (or E1, aI). 

_____-___ 8 Id I 
I 

I E 

0 

Fig. 4. 

cases for n > - 1 (Section 1), 

Using the dependence p1 - p9 = E1~l, and taking into account that 

ut = TX, from the original relations (1.9) we can get the following two 

equalities. 

XI E,, C := ICb.lp,-’ = k$l,-‘ 

(where c = velocity of the shock wave). 

The following boundary conditions can be established 

(3.‘) 
i=l for z- 1, 1 :_ ul-l for z = 21 

t = (1 -1#/(11Y for ~==ZI 

From Fig. 4, we can see that El / 1: = (cl - Q) / E, : ai / a12. 

Now we can derive the dependence al = v/q -EJ xl-i/A,. 

Using this, we can narrow down the first two conditions (3.1) to one 

The third condition will be 

And so with given A, and c u we have to solve (3.2) and (3.3) simul- 
taneously and substitute the value of b into (2.1) and (2.4). It is 

obvious that the constant b in this problem (with fixed c,) and the 

problem of Section 2 depend only upon A,, and not upon p,,, U or k separat- 

ely. It is interesting to note that for practical values of U(X, << 0.5) 

condition (3.2) can be replaced by an approximation: 
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